
Fault-based Attacks on the Bel-T Block Cipher Family

Philipp Jovanovic and Ilia Polian

University of Passau, 94032, Germany

{philipp.jovanovic|ilia.polian}@uni-passau.de

Abstract—We present the first fault-based attack on the

Bel-T block cipher family which has been adopted recently

as a national standard of the Republic of Belarus. Our

attack successfully recovers the secret key of the 128-bit,

192-bit and 256-bit versions of Bel-T using 4, 7 and 10 fault

injections, respectively. We also show the results from our

comprehensive simulation-based experiments.

Keywords-fault-based cryptanalysis, fault injection,

block cipher

I. INTRODUCTION

In this paper, we investigate the vulnerability of the

block cipher family Bel-T to fault-based attacks [1]

which belong to the category of active side-channel

cryptanalysis. Bel-T has been approved as a standard of

Republic of Belarus in 2011. Its specification in Russian

language is available from its developer’s web site, the

Research Institute for Applied Problems of Mathematics

and Informatics of the Belarussian State University [2].

We are not aware of an English-language specification of

this cipher, nor of any published results on its security.

Bel-T follows the Lai-Massey scheme [3], which has

similarities with both substitution-permutation networks

and Feistel networks. Earlier ciphers designed according

to this scheme include IDEA [3] and its extension IDEA

NXT, also known as FOX [4]. Fault-based attacks are

known for both IDEA [5] and FOX [6], but they utilize

specific features of these ciphers and not the Lai-Massey

construction itself and are thus not applicable to Bel-T.

The remainder of the paper is organized as follows.

Section II provides a specification of Bel-T which is the

first English-language description of this cipher as far

as we know. The new fault-based attack is described in

Section III and the simulation results are presented in

Section IV. Finally, Section V concludes the paper.

II. SPECIFICATION

For reasons of consistency, we describe the specifica-

tion of Bel-T using the same notation as in the original

(Russian-language) document [2]. In particular, given

u, v ∈ {0, 1}n, u ⊕ v stands for the bit-wise addition

modulo 2 (exclusive-or) of u and v, and u ⊞ v and

u ⊟ v, respectively, stand for the arithmetical addition

and subtraction of u and v modulo 2n, where u and v

are interpreted as unsigned integers.

Bel-T is a block cipher which encrypts a 128-bit

plaintext X using a 256-bit value θ = θ1 ‖ . . . ‖ θ8,

with 32-bit words θi for 1 ≤ i ≤ 8, to obtain a 128-bit

ciphertext Y . The Bel-T family consists of three ciphers

which employ secret keys of different lengths (128 bits,

192 bits and 256 bits) and are identical otherwise. We

call these versions Bel-T-128, Bel-T-192 and Bel-T-256,

respectively:

• Bel-T-256: The value θ is identical to the 256-bit

secret key.

• Bel-T-192: The words θ1, . . . , θ6 correspond to the

192-bit secret key, and the remaining two words are

set to θ7 := θ1 ⊕ θ2 ⊕ θ3 and θ8 := θ4 ⊕ θ5 ⊕ θ6.

• Bel-T-128: The words θ1, . . . , θ4 correspond to the

128-bit secret key. The remaining four words are

set to θ5 := θ1, θ6 := θ2, θ7 := θ3 and θ8 := θ4.

Note that θ is a 256-bit value in all three versions.

Encryption, see Figure 1, is denoted by Y = Fθ(X),
and decryption is denoted by Y = F−1θ (X). Both are

organized in eight rounds.

1 a := X1; b := X2; c := X3; d := X4;
2 for i = 1, . . . , 8 do

1) b := b⊕G5(a ⊞K7i−6);
2) c := c⊕G21(d ⊞K7i−5);
3) a := a ⊟G13(b ⊞K7i−4);
4) e := G21(b ⊞ c ⊞K7i−3)⊕ 〈i〉32;
5) b := b ⊞ e;
6) c := c ⊟ e;
7) d := d ⊞G13(c ⊞K7i−2);
8) b := b⊕G21(a ⊞K7i−1);
9) c := c⊕G5(d ⊞K7i);

10) swap a and b;
11) swap c and d;
12) swap b and c;

3 Y := b ‖ d ‖ a ‖ c;
4 return Y ;

Fig. 1. Encryption of X = X1 ‖ X2 ‖ X3 ‖ X4

The rounds use different sets of round keys and are

identical otherwise. There are 56 round keys of 32 bits

each and in round i ∈ {1, . . . , 8} seven round keys

K7i−j , with 0 ≤ j ≤ 6, are used. Their order is

shown in Table I, for encryption from top to bottom



and for decryption the other way round. Also note the

different ordering of the K7i−j , during encryption (top)

and decryption (bottom).

TABLE I

KEY USAGE IN BEL-T

i K7i−6 K7i−5 K7i−4 K7i−3 K7i−2 K7i−1 K7i

E
n

cr
y

p
ti

o
n

←
−
−
−
−
−
−

1 θ1 θ2 θ3 θ4 θ5 θ6 θ7

D
ecry

p
tio

n
←
−
−
−
−
−
−

2 θ8 θ1 θ2 θ3 θ4 θ5 θ6
3 θ7 θ8 θ1 θ2 θ3 θ4 θ5
4 θ6 θ7 θ8 θ1 θ2 θ3 θ4
5 θ5 θ6 θ7 θ8 θ1 θ2 θ3
6 θ4 θ5 θ6 θ7 θ8 θ1 θ2
7 θ3 θ4 θ5 θ6 θ7 θ8 θ1
8 θ2 θ3 θ4 θ5 θ6 θ7 θ8

i K7i K7i−1 K7i−2 K7i−3 K7i−4 K7i−5 K7i−6

Three mappings G5, G13 and G21 : {0, 1}32 →
{0, 1}32 are used, where Gr maps a 32-bit word u =
u1 ‖ u2 ‖ u3 ‖ u4, with ui ∈ {0, 1}8, as follows:

Gr(u) = (H(u1) ‖ H(u2) ‖ H(u3) ‖ H(u4)) ≪ r.

Here, H is the SBox specified in Table II and ≪ r

stands for a cyclical shift to the left by r positions.

The value 〈i〉32 in line 4) of the encryption algorithm

stands for the binary number of the round. The diagram

in Figure 2 shows the functionality of a round. It also

indicates how Bel-T can be implemented in hardware.

TABLE II

THE BEL-T SBOX H

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 B1 94 BA C8 0A 08 F5 3B 36 6D 00 8E 58 4A 5D E4

1 85 04 FA 9D 1B B6 C7 AC 25 2E 72 C2 02 FD CE 0D

2 5B E3 D6 12 17 B9 61 81 FE 67 86 AD 71 6B 89 0B

3 5C B0 C0 FF 33 C3 56 B8 35 C4 05 AE D8 E0 7F 99

4 E1 2B DC 1A E2 82 57 EC 70 3F CC F0 95 EE 8D F1

5 C1 AB 76 38 9F E6 78 CA F7 C6 F8 60 D5 BB 9C 4F

6 F3 3C 65 7B 63 7C 30 6A DD 4E A7 79 9E B2 3D 31

7 3E 98 B5 6E 27 D3 BC CF 59 1E 18 1F 4C 5A B7 93

8 E9 DE E7 2C 8F 0C 0F A6 2D DB 49 F4 6F 73 96 47

9 06 07 53 16 ED 24 7A 37 39 CB A3 83 03 A9 8B F6

A 92 BD 9B 1C E5 D1 41 01 54 45 FB C9 5E 4D 0E F2

B 68 20 80 AA 22 7D 64 2F 26 87 F9 34 90 40 55 11

C BE 32 97 13 43 FC 9A 48 A0 2A 88 5F 19 4B 09 A1

D 7E CD A4 D0 15 44 AF 8C A5 84 50 BF 66 D2 E8 8A

E A2 D7 46 52 42 A8 DF B3 69 74 C5 51 EB 23 29 21

F D4 EF D9 B4 3A 62 28 75 91 14 10 EA 77 6C DA 1D

Decryption is identical to encryption, see Figure 1,

with one exception: round key K7i is used in line 1)

instead of K7i−6; round key K7i−1 is used in line

2) instead of K7i−5; and so forth. This reduces the

complexity of the algorithm, in particular for a hardware

implementation, where the same circuitry can be used

for both encryption and decryption. This feature is also

instrumental for the fault-based attack presented below.

III. FAULT-BASED ATTACK ON BEL-T

The fault-based attack scenario assumes that the at-

tacker has physical access to the device that performs the

encryption, is capable to encrypt plaintexts of her choice

a b c d

⊞ G5 ⊕ ⊞G21⊕

⊟ G13 ⊞

⊞

G21

⊞ ⊟⊕

⊞ G13 ⊞

⊞ G21 ⊕ ⊕ G5 ⊞

w x y z

K7i−6 K7i−5

K7i−4

K7i−3

K7i−2

K7i−1 K7i

〈i〉32

L1 L2

L3

L4 L5

◦ ◦

◦

◦ ◦

Fig. 2. The i-th Bel-T round [2] with fault locations Lj

and observe the resulting ciphertext, to decrypt cipher-

texts of her choice and observe the resulting plaintext,

and to inject faults during encryption or decryption. The

aim of the attacker is to recover the secret key θ, which

is stored (not directly accessible) within the device.

Let X be an arbitrary 128-bit plaintext and let Y be

the 128-bit ciphertext calculated by the device in absence

of any fault injections: Y = Fθ(X). The fault-based

attack is conducted by series of fault injections, where

“fault injection” refers to performing the encryption of

the same plaintext X while injecting a transient fault and

recording the faulty ciphertext Y f . It is assumed that the

secret key does not change during the whole attack, that

is, all fault-affected encryptions are performed using the

same θ (and the same X) as the fault-free encryption.

Each fault injection determines several bits of θ. More-

over, the same principle is applied to decryptions: Let X̃

be an arbitrary ciphertext and let Ỹ = F−1θ (X̃) be the

plaintext obtained by decryption in absence of faults.

Injecting faults during decryption results in deviating

plaintexts Ỹ = F
−1,f
θ (X̃).

All faults used in our attack are applied during the

last of the eight rounds of Bel-T. Before we describe

the concrete attacks on Bel-T, we introduce the two fault

models that are used in our analysis:

• The random fault model (RFM) assumes that an

attacker can inject faults into an element of the

state at a freely chosen position, such that its value

switches to a random, unknown value.

• The chosen fault model (CFM) assumes that an

attacker can inject faults into an element of the state

at a freely chosen position, such that the value of

the state element switches to a known value.

To perform our attack on Bel-T-128, we require only



4 RFM faults. For Bel-T-192 and Bel-T-256 we likewise

need 4 RFM faults, but 3 respectively 6 additional CFM

faults. We first describe the attack on Bel-T-128, because

it also forms the basis for the fault attacks on Bel-T-192

and Bel-T-256. In the following, we denote the fault-

free outputs at the end of encryption and decryption,

respectively, by w, x, y and z, as in Figure 2, and the

fault-affected outputs by w′, x′, y′ and z′.

A. Fault Attack on Bel-T-128

We start our attack on Bel-T-128 with the aim to

reconstruct subkey K7i−1 in the last round of the en-

cryption (i = 8), which corresponds to θ7 = θ3. For

this purpose, we inject the first fault f1 (RFM) into the

state at position marked L1 in Figure 2. Note that f1 can

flip an arbitrary number of bits within the 32-bit word

and the best results are achieved during filtering if f1
affects all of the 4 bytes in L1. The value of f1 is not

immediately known to the attacker. However, it can be

derived by observing the correct and faulty ciphertexts

Y and Y f1 at positions y and y′ of the cipher’s output

and calculating the XOR of these values: f1 = y ⊕ y′.

The fault propagates through the key addition of θ7, the

application of G21 and the XOR with the b-part of the

state, and creates an XOR-difference w ⊕ w′, which is

also directly observable at the cipher’s outputs. Since

the value at L1 corresponds to y during a fault-free

encryption, subkey θ7 must obey the following formula:

G21(L1 ⊞ θ7)⊕G21((L1 ⊕ f1)⊞ θ7) = w ⊕ w′ (1)

The XOR with the b-part of the state is ignored since

it does not influence w ⊕ w′. All values in the above

equation are known except for θ7. Eq. 1 is checked for all

232 bit combinations of θ7, and all candidates satisfying

the equation are collected in a set called Θ7.

Referring again to Figure 2, we observe that keys

added at K7i (= θ8 = θ4), can be reconstructed

analogously. Fault f2 is injected at position L2 during

encryption in round 8 and we use the information on

f2 = x ⊕ x′ and z ⊕ z′ from the corresponding outputs

for our analysis. Thereby, we can reduce the number of

candidates for subkey θ8 and store them in set Θ8.

For retrieval of the two missing subkeys θ1 (= θ5) and

θ2 (= θ6), we exploit the property that encryption and

decryption of Bel-T are basically the same. We switch

from encryption to decryption and attack again the last

round (i = 1). Looking at Table I, we see that at positions

K7i and K7i−1 subkeys θ1 and θ2 are added to the

state. Thus, injecting faults f3 and f4 at positions L1

and L2 in decryption allows us to reconstruct the two

missing subkeys using the same approaches as above.

The candidates are stored in sets Θ1 and Θ2, respectively.

After that the candidates for the secret key θ = θ1 ‖
· · · ‖ θ8 = θ1 ‖ θ2 ‖ θ7 ‖ θ8 ‖ θ1 ‖ θ2 ‖ θ7 ‖ θ8 must be

contained in Θ1×Θ2×Θ7×Θ8×Θ1×Θ2×Θ7×Θ8. In

our experiments, this set was always sufficiently small

to perform a brute-force search for the correct key. If

not, we can reduce this set by repeating one or all of the

above procedures and computing the intersection of the

corresponding subkey candidate sets.

B. Fault Attack on Bel-T-192

The attack on Bel-T-192 starts with the same 4 fault

injections and the subsequent analysis as in the Bel-T-

128-case. Thus, we retrieve information on θ1, θ2, θ7 =
θ1 ⊕ θ2 ⊕ θ3 and θ8 = θ4 ⊕ θ5 ⊕ θ6 and store them in

sets Θ1,Θ2,Θ7 and Θ8. Since θ3 = θ7 ⊕ θ1 ⊕ θ2, the

set of subkey candidates Θ3 is obtained from Θ1,Θ2

and Θ7 by collecting all XOR combinations of values

from these three sets. The missing subkeys are two out

of three from θ4, θ5, and θ6, since we already know the

XOR of the latter three from θ8.

Our next target is the key added at position K7i−2 in

the last round of encryption, which corresponds to θ6.

The determination of this subkey cannot be achieved by

injecting an RFM fault before the key addition of K7i−2,

because the difference propagates through the latter and

G13 but the result is masked by the ⊞-operation with

the d-state, which is unknown at this point and therefore

leads to an unpredictable outcome. We switch the fault

model from RFM to CFM and assume that an attacker

can inject faults which set a part of the state to a fixed and

known value. We assume for simplicity that this value

is 0, but the analysis works for any other value, as well.

The CFM fault f5 is injected at position L3, resetting

the d-state at this point to 0. This allows us to build an

equation for filtering θ6-candidates of the form

G13(s⊞ θ6)⊞ 0 = x′ (2)

where s = G5(x⊞θ8)⊕z. Recall that we already reduced

the number of θ8-candidates at this point. A search over

all combinations of θ6 and θ8 candidates is therefore

feasible, as long as the number of θ8 values is not too

large. During our experiments this was never the case

though, as described later. Finally, we again store all θ6
candidates which satisfy Eq. 2 in set Θ6.

Repeating the above approach for decryption is not

necessary, since subkey θ3 is added at position K7i−2,

see Table I, and we already restricted the number of

candidates for the latter in our previous analysis.



Our next target is the key addition K7i−4, where sub-

key θ4 is processed during the last round of encryption.

We need dual faults f6 and f7 at L4 and L5 which reset

the particular state words to 0 and circumvent masking

with unknown state elements a and b. The θ4 values that

satisfy the resulting filtering equation

0⊟G13(0⊞ θ4) = y′ (3)

are stored in set Θ4.

The last missing subkey θ5 can be reconstructed from

the knowledge of the candidates for θ4, θ6 and θ8 =
θ4⊕θ5⊕θ6 and all θ5 candidates are stored in set Θ5. The

complete key is again found by the brute force search in

Θ1×· · ·×Θ8. In summary, a total of 7 faults is sufficient

to reconstruct the secret key θ for Bel-T-192.

C. Fault Attack on Bel-T-256

Mounting the Bel-T-128 attack on Bel-T-256 (by in-

jecting RFM faults f1, f2, f3, and f4) we can reconstruct

candidates for subkeys θ1, θ2, θ7, and θ8. Unlike for

Bel-T-192, the remaining values θ3, θ4, θ5 and θ6 are

independent from the already reconstructed ones. All

following faults are CFMs in the last round of encryption

or decryption, which set the attacked element(s) to 0.

Using an approach similar to Bel-T-192 we can collect

information on subkey θ6. Repeating the same attack on

the last round of decryption, fault f6 at position L3 gives

us candidates for θ3. The filtering equations for injections

of faults f5 and f6 are of a similar shape as Eq. 2.

The last two subkeys θ4 and θ5 are reconstructed

by dual fault injections f7 and f8, and f9 and f10 at

locations L4 and L5 during last round of encryption and

decryption, respectively, see again Table I and Figure 2,

with filtering equations similar to Eq. 3. In summary, 10
fault injections are sufficient to break Bel-T-256.

IV. RESULTS

We performed 5, 000 runs for each of the above

attacks and recorded the sizes of the respective (sub)key

candidate sets. Table III gives an overview on the results

of our simulations. We listed only the results for the

actual (sub)keys and omitted the information on those

that are generated during the Bel-T “key-schedule”, like

θ7 and θ8 in case of Bel-T-192, since they do not provide

any additional insights. The results clearly show that the

fault injections, as detailed in Section III, are sufficient

to reduce the key space of each Bel-T variant such that

a subsequent brute-force on the remaining θ-candidates

becomes feasible. The implementation of our attack was

written in C/C++, but did not exploit parallelisation. All

experiments were performed on a workstation with an

AMD Opteron 6172 Processor operating at 2.1GHz. For

the analysis of one instance (i.e. reconstruction of one

key) without the subsequent brute-force, we measured

average running times of 148.0 (Bel-T-128), 287.0 (Bel-

T-192), and 687.0 (Bel-T-256) seconds, respectively.

TABLE III

STATISTICS ON THE BINARY LOGARITHMS FOR THE NUMBER OF

KEY CANDIDATES

Θ Θ1 Θ2 Θ3 Θ4 Θ5 Θ6 Θ7 Θ8

Bel-T-128

min 0.00 0.00 0.00 0.00 0.00 - - - -
max 22.00 10.00 10.58 17.00 10.58 - - - -
avg 5.11 3.32 3.17 5.64 3.00 - - - -
med 4.58 1.00 1.00 1.00 1.00 - - - -

Bel-T-192

min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - -
max 40.00 10.32 10.00 17.58 0.00 19.17 9.58 - -
avg 10.06 3.32 3.00 7.71 0.00 11.26 2.81 - -
med 9.17 1.00 1.00 3.58 0.00 2.00 1.00 - -

Bel-T-256

min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
max 39.00 10.00 10.00 10.00 0.00 0.00 10.58 16.00 10.58
avg 7.63 3.17 3.17 3.17 0.00 0.00 3.32 4.46 3.32
med 7.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 1.00

V. CONCLUSIONS

We presented a detailed fault analysis of the Bel-T

block cipher family by showing for each of its three

variants, differing by key sizes of 128-, 192- and 256-

bit, how to successfully mount attacks requiring only 4,

7 and 10 faults, respectively. The attack against Bel-T-

128 can be completely performed under a very weak

fault model (RFM). The attacks on Bel-T-192 and Bel-

T-256 using RFM faults recover only 96 and 128 bits

of the 192- and 256-bit master key. Under a slightly

stronger fault model (CFM) the security of the latter

two variants collapses nevertheless and the entire secret

key can be reconstructed. Our experiments show that all

attacks yield compact sets of key candidates for which

brute-force search is practical.

REFERENCES

[1] D. Boneh, R. DeMillo, and R. Lipton, “On the Importance of

Elimination Errors in Cryptographic Computations,” Journal of

Cryptology, vol. 14, pp. 101–119, 2001.

[2] “Data Encryption and Integrity Algorithms,” Preliminary State

Standard of Republic of Belarus (STB P 34.101.31–2007),

http://apmi.bsu.by/assets/files/std/belt-spec27.pdf.

[3] X. Lai and J. Massey, “A Proposal for a New Block Encryption

Standard,” in EUROCRYPT 90, ser. LNCS, I. B. Damgrd, Ed.,

vol. 473. Springer, 1991, pp. 389–404.

[4] P. Junod and S. Vaudenay, “FOX: A New Family of Block Ci-

phers,” in Selected Areas in Cryptography, ser. LNCS, H. Hand-

schuh and M. Hasan, Eds., vol. 3357, 2005, pp. 114–129.

[5] C. Clavier, B. Gierlichs, and I. Verbauwhede, “Fault Analysis

Study of IDEA,” in CT-RSA 2008, ser. LNCS, T. Malkin, Ed.,

vol. 4964, 2008, pp. 274–287.

[6] L. Breveglieri, I. Koren, and P. Maistri, “A Fault Attack Against

the FOX Cipher Family,” in Fault Diagnosis and Tolerance in

Cryptography, ser. LNCS, L. Breveglieri, I. Koren, D. Naccache,

and J.-P. Seifert, Eds., vol. 4236, 2006, pp. 98–105.


